General Concepts of Physics

Abbreviation: 11-L-GKP-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)

Duration
1 semester

Module level
Undergraduate

Other prerequisites

Contents
This module focuses on important concepts and applications that constitute interconnections between the sub-disciplines of Physics (and partly other Natural Sciences). When it comes to concepts, these interconnections are structural, they are elements of the physical terminology and belong to the mental structure of the subject. Applied Physics: synergetic interconnections between elements of knowledge of the corresponding subdiscipline and beyond which are necessary for the solution of many important problems. On both levels, the specific contents and the resulting interconnections have the same significance. Structures and concepts: Dimensional analysis, scaling, similitude theory; fields; interactions; symmetries and conserved quantities, wave equation, waves; multipoles among other mode analysis; non-linear dynamics, self-organisation, deterministic chaos; analogies of transport phenomena; Virial theorem as a structural element; microscopic modelling of macroscopic phenomena; scattering and structure determination; aspects of the history of ideas of important concepts and their controversies (e.g. atomism, determinism); Applied and Technical Physics: Physics and information/communication technology; rules and process technology, sensors; medical technology; climate and weather; Biophysics; ecology; energy; celestial mechanics, satellites, GPS; measuring devices; el. light sources; displays

Intended learning outcomes
Their understanding of important shared concepts enables the students to connect different subdisciplines of Physics, they know the similarities and differences of different usage contexts and therefore have in-depth knowledge of these concepts and are able to mathematically describe and process relevant problems on the level of Theoretical Physics; they understand complex systems of nature and engineering and are able to connect their own physical knowledge in a synergetic manner by analysing the solutions to selected, complex problems, they are able to explain the interactions of knowledge of different disciplines for the solution of complex problems on the basis of selected examples.

Courses

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of weekly contact hours</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>2</td>
<td>German or English</td>
</tr>
<tr>
<td>Ü</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Module taught in: Ü: German or English

Method of assessment

- Written examination (approx. 90 minutes)
- Oral examination of one candidate each (approx. 20 minutes)

Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Referred to in LPO I

- § 77 I Nr. 1 b)

Module appears in

- First state examination for the teaching degree Gymnasium Physics (2015)
- Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)
- First state examination for the teaching degree Gymnasium Physics (2018)