Module title: Principles of Classification of Patterns

Abbreviation: 11-KVM-092-m01

Module coordinator: Managing Director of the Institute of Applied Physics

Module offered by: Faculty of Physics and Astronomy

ECTS: 3

Method of grading: Only after succ. compl. of module(s)

Duration: 1 semester

Module level: undergraduate

Other prerequisites: Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents:

Signals such as images, but also acoustic records, spectra, electrical measurements often contain recurring patterns. These patterns are often classified and analysed by observers, e.g., a doctor when analysing an ECG. More and more automatic procedures are adopted to take on these tasks and classify patterns. The lecture will discuss principles of different classifiers such as "minimum distance" and "maximum likelihood".

Intended learning outcomes:

The students have specific and advanced knowledge in the field of pattern recognition. They know methods of classifying patterns in measuring data as well as ways to automatise these processes. They are able to apply these methods to practical problems.

Courses:

(type, number of weekly contact hours, language — if other than German)

V + R (no information on SWS (weekly contact hours) and course language available)

Method of assessment:

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (90 minutes) or b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places:

--

Additional information:

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in:

Bachelor’s degree (1 major) Physics (2010)

Bachelor’s degree (1 major) Physics (2012)

Master’s degree (1 major) Physics (2010)
<table>
<thead>
<tr>
<th>Master's degree (1 major) Nanostructure Technology (2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's degree (1 major) FOKUS Physics - Nanostructuring Technology (2010)</td>
</tr>
<tr>
<td>Master's degree (1 major) FOKUS Physics (2010)</td>
</tr>
</tbody>
</table>