Module title
Optical Properties of Semiconductor Nanostructures

Abbreviation
11-HNS-161-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
- numerical grade
- Only after succ. compl. of module(s)

Duration
- 1 semester

Module level
- graduate

Other prerequisites
- --

Contents
Semiconductor nanostructures are frequently referred to as "artificial materials". In contrast to atoms, molecules or macroscopic crystals, their electronic, optical and magnetic properties can be systematically tailored by changing their size. The lecture addresses technological challenges in the preparation of semiconductor nanostructures of varying dimensions (2D, 1D, 0D). It provides the basic theoretical concepts to describe their properties, with a focus on optical properties and light-matter coupling. Moreover, it discusses the challenges and concepts of novel optoelectronic and quantum photonic devices based on such nanostructures, including building blocks for quantum communication and quantum computing architectures.

Intended learning outcomes
The students know the theoretical principles and characteristics of semiconductor nanostructures. They have knowledge of the technological methods to fabricate such structures, and of their applications to novel photonic devices. They are able to apply their knowledge to problems in this field of research.

Courses
- **V (3) + R (1)**
- Module taught in: German or English

Method of assessment
- written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes)
- or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester

Language of assessment: German and/or English

Allocation of places
- --

Additional information
- --

Referred to in LPO I
- (examination regulations for teaching-degree programmes)
- --

Module appears in
- Master's degree (1 major) Mathematics (2016)
- Master's degree (1 major) Physics (2016)
- Master's degree (1 major) Nanostructure Technology (2016)
- Master's degree (1 major) Computational Mathematics (2016)
- Master's degree (1 major) Functional Materials (2016)
- Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)
- Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)
Master's degree (1 major) Computational Mathematics (2019)
Master's degree (1 major) Mathematics (2019)