Module description

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Specialization Quantum Technology</td>
<td>11-FS-N-212-m01</td>
</tr>
</tbody>
</table>

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(not) successfully completed</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
Introduction to current experimental, theoretical or engineering research topics within quantum technology research that are of particular relevance for the envisaged topic of the master thesis. A seminar talk summarizing the required underlying fundamental topics.

Intended learning outcomes
Thorough understanding of a current experimental, theoretical or engineering research topic in the field of quantum technology research chosen for the master thesis. In-depth knowledge of the current state of research and ability to present and convey this knowledge in a seminar talk.

Courses (type, number of weekly contact hours, language — if other than German)
S (4)
Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
talk with discussion (30 to 45 minutes)
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--

Module appears in
Master’s degree (1 major) Quantum Technology (2021)