Module title

FOKUS Research Module Dirac Fermions in Mesoscopic Systems

Abbreviation

11-FM-RMS-092-m01

Module coordinator

chairperson of examination committee

Module offered by

Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Specific and advanced knowledge of independent scientific work in a current research area, especially in the specialist field of Dirac fermions in mesoscopic systems, reproduction of knowledge, acquisition of social and methodological competencies.

Intended learning outcomes

The students have special and advanced knowledge of independent scientific work in a current research area, especially in the field of Dirac fermions in mesoscopic systems, and are able to reproduce the acquired knowledge, to apply the acquired methods and to summarise a sub-area of the current research area in an oral presentation.

Courses

1. **Relativistische Effekte in Mesoskopischen Systemen** (Relativistic Effects in Mesoscopic Systems): V (3 weekly contact hours) + Ü/P (1 weekly contact hour), German or English
2. **Kompaktseminar Dirac Fermionen in Mesoskopischen Systemen** (Block Taught Seminar Dirac Fermions in Mesoscopic Systems): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment

This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)
2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).

Details on when assessment component 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--

Module appears in

- Master's degree (1 major) FOKUS Physics (2010)
- Master's degree (1 major) FOKUS Physics (2011)