Module title
FOKUS Research Module Density Functional Theory and the Physics of Oxide Heterostructure

Abbreviation
11-FM-DFT-142-m01

Module coordinator
chairperson of examination committee

Module offered by
Faculty of Physics and Astronomy

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
Recommended: 11-CMS

Contents
Concepts and principles of density functional theory.

Intended learning outcomes
The students know the concepts and principles of density functional theory.

Courses
(Density Functional Theory and Physics of Oxide Heterostructures): V (2 weekly contact hours) + Ü/P (1 weekly contact hour), German or English, once a year (winter semester)

(Kompaktseminar Density Functional Theory and Physics of Oxide Heterostructures): S (2 weekly contact hours), German or English, details on availability to be announced (block taught seminar (3 days), usually held during semester break)

Method of assessment
This module has the following assessment components

1. Topics covered in lectures and exercises: written examination (approx. 90 minutes) or talk (approx. 30 minutes) or oral examination of one candidate each or oral examination in groups (approx. 30 minutes) or project report (approx. 8 pages)

2. Seminar: talk (approx. 30 to 45 minutes)

Assessment components 1 and 2 will be offered in German or English.

Students must register for assessment components 1 and 2 online (details to be announced).

Assessment component 1 will be offered once a year in the winter semester; details on when assessment component 2 will be offered to be announced.

To pass this module, students must pass both assessment component 1 and assessment component 2.

Allocation of places
--

Additional information
--

Referred to in LPO 1
(examination regulations for teaching-degree programmes)

Module appears in
Master's degree (1 major) FOKUS Physics (2010)
Master's degree (1 major) FOKUS Physics (2011)