

Module description

Module title					Abbreviation
Solid State Physics 2					11-FK2-161-m01
Module coordinator				Module offered by	
Managing Director of the Institute of Applied Physics				Faculty of Physics and Astronomy	
ECTS	Method of grading		Only after succ. compl. of module(s)		
8	numerical grade				
Duration		Module level	Other prerequisites		
1 semester		graduate			

Contents

Modern scattering methods; neutron scattering as a method to investigate the atomic and magnetic structure and excitations such as phonons and magnetic waves; resonant elastic X-ray scattering and absorption; investigation of magnetic, orbital and charge order; X-ray and neutron reflectometry; investigation of the structural, magnetic and electronic properties of thin films and superlattices; resonant inelastic X-ray scattering; investigation of excitations in solids and thin films; STEM ("scanning transmission electron microscopy"); further topics upon agreement.

Intended learning outcomes

The students know different modern scattering methods such as neutron scattering, resonant elastic X-ray scattering, modern scattering theory, X-ray and neutron reflectometry and resonant inelastic X-ray scattering. They are familiar with the theoretical principles and applications of these methods.

Courses (type, number of weekly contact hours, language — if other than German)

V(4) + R(2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester Language of assessment: German and/or English

Allocation of places

--

Additional information

--

Workload

240 h

Teaching cycle

--

$\textbf{Referred to in LPO I} \ \ (\text{examination regulations for teaching-degree programmes})$

--

Module appears in

Master's degree (1 major) Mathematics (2016)

Master's degree (1 major) Physics (2016)

Master's degree (1 major) Nanostructure Technology (2016)

Module description

Master's degree (1 major) Computational Mathematics (2016)

Master's degree (1 major) Functional Materials (2016)

Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)

Master's degree (1 major) Computational Mathematics (2019)

Master's degree (1 major) Mathematics (2019)

JMU Würzburg • generated 20.10.2023 • Module data record 123887