Module title
Introduction to Plasmaphysics

Abbreviation
11-EPP-092-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade --

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Graduate

Other prerequisites
Certain prerequisites must be met to qualify for admission to assessment. The lecturer will inform students about the respective details at the beginning of the course. Registration for the course will be considered a declaration of will to seek admission to assessment. If students have obtained the qualification for admission to assessment over the course of the semester, the lecturer will put their registration for assessment into effect. Students who meet all prerequisites will be admitted to assessment in the current or in the subsequent semester. For assessment at a later date, students will have to obtain the qualification for admission to assessment anew.

Contents
Plasma Astrophysics: Dynamics of charged particles in electric and magnetic fields, Magnetohydrodynamics, Transport equations for energetic particles, Properties of magnetic turbulence, Propagation of solar particles within the solar wind, Particle acceleration via shock waves and via interaction with plasma turbulence, Particle acceleration and transport in galaxies and other astrophysical objects, Cosmic radiation.

Intended learning outcomes
The students know the principles of Plasma Physics, especially the description of transport phenomena in plasma. They are able to solve basic problems of Plasma Physics and to apply this knowledge to Astrophysics.

Courses
(V + R) (no information on SWS (weekly contact hours) and course language available)

Method of assessment
(a) written examination (approx. 90 minutes) or (b) oral examination of one candidate each or oral examination in groups (approx. 30 minutes per candidate, for modules with less than 4 ECTS credits approx. 20 minutes) or (c) project report (approx. 8 to 10 pages, time to complete: 1 to 4 weeks) or (d) presentation/seminar presentation (approx. 30 minutes)

Assessment offered: When and how often assessment will be offered depends on the method of assessment and will be announced in due form under observance of Section 32 Subsection 3 ASPO (general academic and examination regulations) 2009.

Language of assessment: German, English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

Module appears in
Bachelor’ degree (1 major) Physics (2010)
Bachelor’ degree (1 major) Physics (2012)
Bachelor’ degree (1 major) Mathematical Physics (2009)
<table>
<thead>
<tr>
<th>Degree</th>
<th>Major</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor's degree</td>
<td>Mathematical Physics</td>
<td>2012</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Mathematics</td>
<td>2012</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Mathematics</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Physics</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Physics</td>
<td>2011</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Nanostructure Technology</td>
<td>2011</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Nanostructure Technology</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Mathematical Physics</td>
<td>2012</td>
</tr>
<tr>
<td>Master's degree</td>
<td>FOKUS Physics - Nanostructuring Technology</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>FOKUS Physics</td>
<td>2010</td>
</tr>
<tr>
<td>Master's degree</td>
<td>FOKUS Physics</td>
<td>2011</td>
</tr>
<tr>
<td>Master's degree</td>
<td>Computational Mathematics</td>
<td>2012</td>
</tr>
</tbody>
</table>