

Module description

Module title					Abbreviation	
Principles of Image Processing					11-EBV-152-m01	
Module coordinator				Module offered by		
Managing Director of the Institute of Applied Physics				Faculty of Physics and Astronomy		
ECTS	Method of grading		Only after succ. co	Only after succ. compl. of module(s)		
3	nume	rical grade				
Duration		Module level	Other prerequisite	Other prerequisites		
1 semester		undergraduate				
C						

Contents

Introduction to image processing. Pictures as two-dimensional signals; digitalisation. Two-dimensional Fourier transform. Histogram equalisation (e.g. image brightening) and pixel connectivity (e.g. noise reduction). Automatic image recognition: Segmentation, classification. Technological image generation. Applications (e.g. motion tracking). Three-dimensional images.

Intended learning outcomes

The students have specific and advanced knowledge in the field of image processing. They know the principles and theory of signal processing for images and have corresponding knowledge of image generation. They are able to independently work with literature, they understand the characteristics of image processing with commercial software and are able to process images for the analysis of experiments with imaging measuring methods.

Courses (type, number of weekly contact hours, language — if other than German)

V (2)

Module taught in: German or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) written examination (approx. 90 to 120 minutes) or
- b) oral examination of one candidate each (approx. 30 minutes) or
- c) oral examination in groups (groups of 2, approx. 30 minutes per candidate) or
- d) project report (approx. 8 to 10 pages) or
- e) presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English Assessment offered: Once a year, winter semester

Allocation of places

--

Additional information

--

Workload

90 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor's degree (1 major) Physics (2015)

Bachelor's degree (1 major) Nanostructure Technology (2015)

Module description

Bachelor's degree (1 major) Physics (2020)
Bachelor's degree (1 major) Nanostructure Technology (2020)
Bachelor's degree (1 major) Quantum Technology (2021)
exchange program Physics (2023)

JMU Würzburg • generated 18.04.2025 • Module data record 122907