Module title
Principles of Image Processing

Abbreviation
11-EBV-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
3

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Undergraduate

Other prerequisites
--

Contents
Introduction to image processing. Pictures as two-dimensional signals; digitalisation. Two-dimensional Fourier transform. Histogram equalisation (e.g. image brightening) and pixel connectivity (e.g. noise reduction). Automatic image recognition: Segmentation, classification. Technological image generation. Applications (e.g. motion tracking). Three-dimensional images.

Intended learning outcomes
The students have specific and advanced knowledge in the field of image processing. They know the principles and theory of signal processing for images and have corresponding knowledge of image generation. They are able to independently work with literature, they understand the characteristics of image processing with commercial software and are able to process images for the analysis of experiments with imaging measuring methods.

Courses
(V (2))
Module taught in: German or English

Method of assessment
Written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: Once a year, winter semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--

Module appears in
- Bachelor' degree (1 major) Physics (2015)
- Bachelor' degree (1 major) Nanostructure Technology (2015)
- Bachelor' degree (1 major) Physics (2020)
- Bachelor' degree (1 major) Nanostructure Technology (2020)
- Bachelor' degree (1 major) Quantum Technology (2021)