Module description

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Physics 7 (Solid State Phenomena [Semiconductor, Superconductivity, Magnetism])</td>
<td>11-E7-072-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>numerical grade</td>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
<td>Physical laws of solid-state phenomena (semiconductors, superconductivity, magnetism)</td>
</tr>
</tbody>
</table>

Intended learning outcomes
The students have knowledge of the basic contexts and principles of electronic transport and electrical properties (semiconductors: Doping effects, pn transitions, metal-semiconductor interfaces; superconductivity: phenomenological models, BCS model; magnetism: Dia-, para- and ferromagnetism, mean field description of magnetic order)

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
written examination (approx. 120 minutes)

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--

Module appears in
- Bachelor' degree (1 major) Physics (2007)
- Bachelor' degree (1 major) Physics (2008)
- Bachelor' degree (1 major) Nanostructure Technology (2008)
- Bachelor' degree (1 major) Nanostructure Technology (2007)
- Bachelor's degree (1 major, 1 minor) Physics (Minor, 2008)