Module title
Nuclear and Elementary Particle Physics

Abbreviation
11-E-T-152-m01

Module coordinator
Managing Director of the Institute of Applied Physics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
Numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
Undergraduate

Other prerequisites
--

Contents
1. Overview, historical introduction, history and significance of Nuclear and Particle Physics
2. Methods of Nuclear Physics, scattering and spectroscopy, nuclear radius, composition of matter, mass and charge distribution in the nucleus, the discovery of the proton and neutron
3. Nuclear models, the mass of the atomic nuclei, droplet model, bonding energy, nuclear shell model
4. Structure of cores, angular momentum, spin, parity, mag. and electr. moments, collective excitation forms, spin-orbit interaction
5. Radioactivity and spectroscopy, radioactive decay, natural and civilisational sources of ionising radiation
6. Nuclear energy, nuclear fission, nuclear reactors, nuclear fusion, star power, star development, formation of the chemical elements of hydrogen
7. Radiation and matter, interaction of radiation and matter, Bethe-Bloch formula, photoelectric effect, pair production
8. Instruments, accelerators and detectors
9. Electromagnetic interaction, differential cross section, virtual photons, Feynman graphs, exchange interaction
10. Strong interaction, quarks, gluons, colour and degree of freedom, deep-inelastic electron-proton scattering, confinement, asymptotic freedom, particle zoo, isospin, strangeness, SU(3) symmetry, antiprotons
11. Weak interaction, cracked mirror symmetries, Wu experiment, charge conjugation, time reversal, CP invariance, exchange particles, W and Z, neutrinos, neutrino vibrations
12. Standard model, three families of leptons and quarks, quark-lepton symmetry, Higgs boson, free parameters

Intended learning outcomes
The students understand the basic connections between fundamental Nuclear and Elementary Particle Physics. They have an overview of the experimental observations of Particle Physics and the theoretical models which describe them.

Courses
Type, number of weekly contact hours, language — if other than German

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Weekly Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>3</td>
</tr>
<tr>
<td>Ü</td>
<td>1</td>
</tr>
</tbody>
</table>

Module taught in: Ü: German or English

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--

Module appears in
- Bachelor' degree (1 major) Mathematics (2015)
- Bachelor' degree (1 major) Physics (2015)
- Bachelor' degree (1 major) Mathematical Physics (2015)
Bachelor’ degree (1 major) Computational Mathematics (2015)
Bachelor’s degree (1 major, 1 minor) Physics (Minor, 2015)
Bachelor’ degree (1 major) Mathematical Physics (2016)