

Module description

Module title					Abbreviation	
Advanced Topics in Physics					11-CSPM-161-m01	
Module coordinator				Module offered by		
chairperson of examination committee				Faculty of Physics and Astronomy		
ECTS	Meth	od of grading	Only after succ. co	Only after succ. compl. of module(s)		
6	nume	rical grade				
Duration Modu		Module level	Other prerequisite	Other prerequisites		
1 semester		graduate	Approval from exa	Approval from examination committee required.		
Contents						

This module will enable lecturers of Physics to teach advanced courses on topics not covered in any of the other modules. These topics may relate either to recent research developments or to subjects not included in the regular curriculum.

Intended learning outcomes

The students advance their knowledge and understanding of an advanced topic of nanostructure technology and acquire insights into the connections between research and teaching.

Courses (type, number of weekly contact hours, language - if other than German)

V(3) + R(1)

 $\textbf{Method of assessment} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language} - \textbf{if other than German, examination offered} - \textbf{if not every semester, information on whether} \ (\textbf{type}, \textbf{scope}, \textbf{language}) \ (\textbf{type}, \textbf{language}) \$ module is creditable for bonus)

written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Language of assessment: German and/or English

Allocation of places

Additional information

Workload

180 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Master's degree (1 major) Nanostructure Technology (2016)

Master's degree (1 major) Nanostructure Technology (2020)

Master's degree (1 major) Quantum Technology (2021)

Module studies (Master) Quantum Technology (2021)

JMU Würzburg • generated 29.03.2024 • Module data record 124260