Module title
Renormalization Group and Critical Phenomena

Abbreviation
11-CRP-161-m01

Module coordinator
Managing Director of the Institute of Theoretical Physics and Astrophysics

Module offered by
Faculty of Physics and Astronomy

ECTS
6

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
1. Phase transitions
2. Mean field theory
3. The concept of the renormalization group (RG) Phase diagrams and fixed points
4. Perturbation-theoretical renormalization group
5. Low-dimensional systems
6. Conformal symmetry

Intended learning outcomes
The students acquire profound knowledge of the principles of scale invariance and of the renormalisation group (RG) in Statistical Physics. They understand the concept of RG flow with respect to effective field theories in both statistical and quantum field theory.

Courses
V (3) + R (1)
Module taught in: German or English

Method of assessment
written examination (approx. 90 to 120 minutes) or oral examination of one candidate each (approx. 30 minutes) or oral examination in groups (groups of 2, approx. 30 minutes per candidate) or project report (approx. 8 to 10 pages) or presentation/talk (approx. 30 minutes).

If a written examination was chosen as method of assessment, this may be changed and assessment may instead take the form of an oral examination of one candidate each or an oral examination in groups. If the method of assessment is changed, the lecturer must inform students about this by four weeks prior to the original examination date at the latest.

Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--

Module appears in
Master's degree (1 major) Mathematics (2016)
Master's degree (1 major) Physics (2016)
Master's degree (1 major) Mathematical Physics (2016)
Master's degree (1 major) Computational Mathematics (2016)
Master's teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)
Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)
Master's degree (1 major) Computational Mathematics (2019)
Master's degree (1 major) Mathematics (2019)