Module title

Advanced Analysis

Abbreviation

10-M-VAN-072-m01

Module coordinator

Dean of Studies Mathematik (Mathematics)

Module offered by

Institute of Mathematics

ECTS

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Method of grading

Numerical grade

Only after succ. compl. of module(s)

--

Contents

Lebesgue integral in several variables, including theorems on convergence and Fubini’s theorem, L^p-spaces and elementary Fourier theory in L^2, Gauss’s theorem.

Intended learning outcomes

The student is acquainted with advanced topics in analysis. Taking the example of the Lebesgue integral, he or she is able to understand the construction of a complex mathematical concept.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

a) written examination (approx. 90 minutes; usually chosen) or b) oral examination of one candidate each (approx. 20 minutes) or c) oral examination in groups (groups of 2, approx. 30 minutes)

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--

Module appears in

Bachelor’ degree (1 major) Mathematics (2007)