Module description

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics 2 for Students of Physics and Quantum Technology</td>
<td>10-M-PHY2-212-m01</td>
</tr>
</tbody>
</table>

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>undergraduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents
Linear maps and systems of linear equations, matrix calculus, eigenvalue theory, differential and integral calculus in several variables, differential equations, Fourier analysis.

Intended learning outcomes
The student gets acquainted with fundamental concepts of advanced mathematics. He/She learns to apply these methods to simple problems in natural and engineering sciences, in particular in the field of physics and quantum technology, and is able to interpret the results.

Courses
(V (5) + Ü (2))
Exercises in: German or English

Method of assessment
(a) written examination (Usually chosen, approx. 90 to 120 minutes) or
(b) oral examination of one candidate each (approx. 20 minutes) or
(c) oral examination in groups (groups of 2, 15 minutes per candidate)
Language of assessment: German and/or English
creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--

Module appears in
Bachelor' degree (1 major) Quantum Technology (2021)