Module title
Introduction to Partial Differential Equations for Mathematical Physics

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS Method of grading Only after succ. compl. of module(s)
10 numerical grade --

Duration Module level Other prerequisites
1 semester undergraduate --

Contents
Examples of partial differential equations and partial differential equations of first order, existence and uniqueness theorems, basic equations of mathematical physics, boundary value problems, maximum principle and Dirichlet problem.

Intended learning outcomes
The student is acquainted with the fundamental concepts and methods in the theory of partial differential equations. He/she is able to apply these methods to practical problems.

Courses (type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) oral examination of one candidate each (15 to 30 minutes) or b) oral examination in groups of 2 candidates (10 to 15 minutes each)
Assessment will have reference to a topic in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-field Gesamtüberblick Mathematische Methoden (Overview Mathematical Methods) or in module group Ergänzung Mathematik (Supplementary Topics in Mathematics).
Assessment offered: In the semester in which the course is offered and in the subsequent semester
Language of assessment: German and/or English creditable for bonus

Allocation of places
--

Additional information
--

Referred to in LPO I (examination regulations for teaching-degree programmes)
--

Module appears in
Bachelor’ degree (1 major) Mathematical Physics (2015)
Bachelor’ degree (1 major) Mathematical Physics (2016)