Module description

Module title
Overview Complex Analysis and Number Theory

Abbreviation
10-M-FTZT-Ü-152-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
12

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Complex differentiability and Cauchy-Riemann differential equations, path integrals and Cauchy integral theorems, isolated singularities, meromorphic functions and Laurent series, residue theorem and applications, Weierstraß product theorem and theorem of Mittag-Leffler, conformal maps; elementary properties of divisibility, prime numbers and prime number factorisation, modular arithmetics, prime tests and methods for factorisation, structure of the residue class rings, theory of quadratic remainders, quadratic forms, diophantine approximation and diophantine equations.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in complex analysis and number theory. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
(type, number of weekly contact hours, language — if other than German)
V (4) + Ü (2)

Method of assessment
(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)
oral examination of one candidate each (20 to 40 minutes)
Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-fields Gesamtüberblick (Overview).
Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--

Module appears in
Bachelor' degree (1 major) Mathematics (2015)
Bachelor' degree (1 major) Computational Mathematics (2015)