Module title
Overview Functional Analysis and Differential Geometry for Mathematical Physics

Abbreviation
10-M-FADG-PÜ-152-m01

Module coordinator
Dean of Studies Mathematik (Mathematics)

Module offered by
Institute of Mathematics

ECTS
13

Method of grading
Only after succ. compl. of module(s)

Numerical grade
--

Duration
1 semester

Module level
undergraduate

Other prerequisites
--

Contents
Banach spaces and Hilbert spaces, bounded operators, principles of functional analysis; curves in Euclidean spaces, curvature, Frenet equations, local classification, submanifolds (hypersurfaces in particular) in Euclidean spaces, curvature of hypersurfaces, geodesics, isometries, main theorem on local surface theory, special classes of surfaces.

Intended learning outcomes
The student is acquainted with fundamental concepts and methods in differential geometry and functional analysis. He/She is able to relate these concepts with one another, and realises the advantages of thinking across the borders of different branches in mathematics.

Courses
V (4) + Ü (2)

Method of assessment
oral examination of one candidate each (20 to 40 minutes)

Assessment will have reference to two topics in pure mathematics as agreed upon with the examiner. Each topic may only be selected as the subject of one examination in the sub-field Gesamtüberblick Mathematische Methoden (Overview Mathematical Methods) or in module group Ergänzung Mathematik (Supplementary Topics in Mathematics).

Language of assessment: German and/or English

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)
--

Module appears in
Bachelor' degree (1 major) Mathematical Physics (2015)
Bachelor' degree (1 major) Mathematical Physics (2016)
Bachelor' degree (1 major) Mathematical Physics (2020)