

Module description

Module title					Abbreviation
Introduction to Stochastic Financial Mathematics					10-M-EFM-152-m01
Module coordinator				Module offered by	
Dean of Studies Mathematik (Mathematics)				Institute of Mathematics	
ECTS	Meth	od of grading	Only after succ. compl. of module(s)		
9	nume	rical grade			
Duration		Module level	Other prerequisites		
1 semester		undergraduate			
Conter	nts	•			

Arbitrage and no-arbitrage, annuities and bonds, valuation of deterministic cash flows, actuarial present value, term structures and yield curves, forwards, payout profiles of options and other derivates, fundamental theorem of asset pricing in the stochastic one-period model, risk neutral price measures, replication and completeness, stochastic multi-period models, valuation of European options in the binomial model, Black-Scholes formula.

Intended learning outcomes

The student is acquainted with the fundamental concepts and methods of stochastic financial mathematics, can apply them to practical problems and knows about typical fields of application.

Courses (type, number of weekly contact hours, language - if other than German)

 $V(4) + \ddot{U}(2)$

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

a) written examination (approx. 90 to 180 minutes, usually chosen) or b) oral examination of one candidate each (15 to 30 minutes) or c) oral examination in groups (groups of 2, 10 to 15 minutes per candidate) Language of assessment: German and/or English

creditable for bonus

Allocation of places

Additional information

Workload

270 h

Teaching cycle

Referred to in LPO I (examination regulations for teaching-degree programmes)

Module appears in

Bachelor' degree (1 major) Mathematics (2015)

Bachelor' degree (1 major) Economathematics (2015)

Bachelor' degree (1 major) Computational Mathematics (2015)

Bachelor' degree (1 major) Economathematics (2017)

Bachelor' degree (1 major) Economathematics (2021)

Bachelor' degree (1 major) Economathematics (2022)

Bachelor' degree (1 major) Mathematics (2023)

Bachelor' degree (1 major) Economathematics (2023)

Bachelor' degree (1 major) Economathematics (2024)