

Module description

Module title					Abbreviation
Spacecraft System Analysis					10-LURI=SSA-232-m01
Module coordinator				Module offered by	
holder of the Chair of Computer Science VIII				Institute of Computer Science	
ECTS	Meth	od of grading	Only after succ. co	Only after succ. compl. of module(s)	
10	numerical grade				
Duration		Module level	Other prerequisite	Other prerequisites	
1 semester		graduate			
Contants					

Contents

Introduction: history of space flight, system design of spacecraft. Space dynamics: two-body dynamics, Kepler orbits, disturbance forces, transfer orbits. Mission analysis: earth and sun-synchronous orbits, shadows, solar angle of incidence. Thermal control of satellites: thermal analysis, thermal design and technologies, verification of thermal designs. Telecommunication: ground contact analysis, data transmission, satellite monitoring (telemetry, telecommando). Structure and mechanisms. Energy systems: primary, secondary, management, power generation: solar cells. On-board data processing. Propulsion systems. Tests (mechanical, electrical). Operation of spacecraft. Ground segment.

Intended learning outcomes

The students master system aspects of the layouting of technical systems. Using the example of spacecraft, major subsystems and their integration into a working whole are being analysed.

Courses (type, number of weekly contact hours, language — if other than German)

 $V(4) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): ES, LR

Workload

300 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

JMU Würzburg • generated 29.03.2024 • Module data record 141021