Module title	Abbreviation
Robotics 1 | 10-I=RO1-152-m01

Module coordinator | Module offered by
holder of the Chair of Computer Science VII | Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duration</th>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 semester</td>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

History, applications and properties of robots, direct kinematics of manipulators: coordinate systems, rotations, homogenous coordinates, axis coordinates, arm equation. Inverse kinematics: solution properties, end effector configuration, numerical and analytical approaches, examples of different robots for analytical approaches. Workspace analysis and trajectory planning, dynamics of manipulators: Lagrange-Euler model, direct and inverse dynamics. Mobile robots: direct and inverse kinematics, propulsion system, tricycle, Ackermann steering, holonomes and non-holonomic restrictions, kinematic classification of mobile robots, posture kinematic model. Movement control and path planning: roadmap methods, cell decomposition methods, potential field methods. Sensors: position sensors, speed sensors, distance sensors.

Intended learning outcomes

The students master the fundamentals of robot manipulators and vehicles and are, in particular, familiar with their kinematics and dynamics as well as the planning of paths and task execution.

Courses (type, number of weekly contact hours, language — if other than German)

V (4) + Ü (2)

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 90 minutes)
creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master’s programme Informatik (Computer Science, 120 ECTS credits): IS, ES, LR, HCI

Workload

240 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

- Master’s degree (1 major) Space Science and Technology (2015)
- First state examination for the teaching degree Gymnasium Computer Science (2015)
- Master’s degree (1 major) Computer Science (2016)
- Master’s degree (1 major) Mathematics (2016)
- Master’s degree (1 major) Computational Mathematics (2016)
- Master’s teaching degree Gymnasium MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)
- Supplementary course MINT Teacher Education PLUS, Elite Network Bavaria (ENB) (2016)
- Master’s degree (1 major) Computer Science (2017)
- Master’s degree (1 major) Satellite Technology (2018)
<table>
<thead>
<tr>
<th>Master's degree (1 major) Computational Mathematics (2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master’s degree (1 major) Mathematics (2019)</td>
</tr>
</tbody>
</table>