

# Module description

| Module title                                   |                   |              |                     |                                      | Abbreviation    |  |
|------------------------------------------------|-------------------|--------------|---------------------|--------------------------------------|-----------------|--|
| Image Processing and Computational Photography |                   |              |                     |                                      | 10-l=IP-222-m01 |  |
| Module coordinator                             |                   |              |                     | Module offered by                    |                 |  |
| holder of the Chair of Computer Science IV     |                   |              |                     | Institute of Computer Science        |                 |  |
| ECTS                                           | Method of grading |              | Only after succ. co | Only after succ. compl. of module(s) |                 |  |
| 5                                              | numerical grade   |              |                     |                                      |                 |  |
| Duration                                       |                   | Module level | Other prerequisite  | Other prerequisites                  |                 |  |
| 1 semester                                     |                   | graduate     |                     |                                      |                 |  |
|                                                |                   |              |                     |                                      |                 |  |

#### **Contents**

This course aims at offering a self-contained account of image processing and computational photography and its underlying concepts, including the recent use of deep learning. The topics that will be covered are:

- introduction to image processing and computational photography
- sampling and quantization
- light and color
- image acquisition
- deep learning
- generative methods
- image signal processing
- image restoration
- sensor and image quality assessment
- image compression
- applications

#### **Intended learning outcomes**

Students have fundamental knowledge of problems and techniques in the field of image processing and computational photography and are able to independently identify and apply suitable methods for concrete problems.

- Overview of the most important concepts of image formation, perception and analysis, and Computational Photography
- Gaining experience through home assignments, practical computer and programming exercises
- Providing a sound solid background knowledge for the Computer Vision courses

**Courses** (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$ 

Module taught in: English

**Method of assessment** (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

Creditable for bonus

# **Allocation of places**

\_

# **Additional information**

--

#### Workload

150 h

# Teaching cycle

--



# Module description

# **Referred to in LPO I** (examination regulations for teaching-degree programmes)

...

# Module appears in

Master's degree (1 major) Information Systems (2019)

Master's degree (1 major) eXtended Artificial Intelligence (xtAI) (2020)

Master's degree (1 major) Information Systems (2022)

Master's degree (1 major) Computer Science (2023)

Master's degree (1 major) Aerospace Computer Science (2023)

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Master's degree (1 major) Information Systems (2024)

JMU Würzburg • generated 29.03.2024 • Module data record 140946