

Module description

Module title					Abbreviation	
Deep Reinforcement Learning for Optimal Control					10-l=DRLOC-252-m01	
Module coordinator				Module offe	Module offered by	
Dean of Studies Informatik (Computer Science)			ter Science)	Institute of	Institute of Computer Science	
ECTS	Metho	ethod of grading Only after succ		compl. of module(s)		
5	numerical grade					
Duration		Module level	Other prerequis	Other prerequisites		
1 semester		graduate				

Contents

- Key Concepts in Reinforcement Learning
- Exact Methods for Finite Markov Decision Processes
- Tabular Reinforcement Learning
- Planning and Learning with Tabular Methods
- Approximation Methods and Deep Reinforcement Learning
- Policy Optimization
- Value-Based Methods
- Applying Reinforcement Learning and Practical Tips and Tricks
- Aerospace Applications
- Model-Based Reinforcement Learning
- Challenges
- Frontiers and Future of Deep Reinforcement Learning

Intended learning outcomes

Students understand the basics of reinforcement learning & deep reinforcement learning (model-free & model-based). They understand current challenges and unsolved problems. They are able to use standard algorithms for (continuous) control tasks and have learned about aerospace applications.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

creditable for bonus

Allocation of places

--

Additional information

Focuses available for students of the Master's programme Informatik (Computer Science, 120 ECTS credits): IN

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module description

Master's degree (1 major) Computer Science (2025)

JMU Würzburg • generated 18.04.2025 • Module data record 142450