

Module description

Module title					Abbreviation	
Deep Reinforcement Learning for Intelligent Space Systems				s	10-I=DRLISS-252-m01	
Module coordinator				Module offered by		
Dean of Studies Informatik (Computer Science)			Science)	Institute of Computer Science		
ECTS	Metho	od of grading	Only after succ. compl. of module(s)			
5	nume	rical grade				
Duration		Module level	Other prerequisites			
1 semester		graduate				

Contents

- Key Concepts in Reinforcement Learning
- Exact Methods for Finite Markov Decision Processes
- Tabular Reinforcement Learning
- Planning and Learning with Tabular Methods
- Approximation Methods and Deep Reinforcement Learning
- Policy Optimization
- Value-Based Methods
- Applying Reinforcement Learning and Practical Tips and Tricks
- Aerospace Applications
- Model-Based Reinforcement Learning
- Challenges
- Frontiers and Future of Deep Reinforcement Learning

Intended learning outcomes

Students understand the basics of reinforcement learning & deep reinforcement learning (model-free & model-based). They understand current challenges and unsolved problems. They are able to use standard algorithms for (continuous) control tasks and have learned about aerospace applications.

 $\textbf{Courses} \ (\textbf{type, number of weekly contact hours, language} - \textbf{if other than German})$

 $V(2) + \ddot{U}(2)$

Module taught in: German and/or English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

__

Workload

150 h

Teaching cycle

Teaching cycle: every year, summer semester

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module description

1	C4		
keinem	Studiengang	zugeord	net

JMU Würzburg • generated 18.04.2025 • Module data record 142843