Module Description

Module title

Approximation Algorithms

Abbreviation

10-I=APA-102-m01

Module coordinator

holder of the Chair of Computer Science I

Module offered by

Institute of Computer Science

ECTS

5

Method of grading

Only after succ. compl. of module(s)

Numerical grade

--

Duration

1 semester

Module level

graduate

Other prerequisites

Where applicable, prerequisites as specified by the lecturer at the beginning of the course (e.g. completion of exercises).

Contents

The task of finding the optimal solution for a given problem is omnipresent in computer science. Unfortunately, there are many problems without an efficient algorithm for an optimal solution. As a result, in practice, methods are used which do not always give the optimal solution but always give good solutions. This lecture will discuss drafting and analysing techniques for algorithms which have a proven approximation quality. With the help of practical optimisation problems, the lecture will introduce students to important drafting techniques such as greedy, local search, scaling as well as methods based on linear programming.

Intended learning outcomes

The students are able to analyse easy approximation methods in terms of their quality. They understand fundamental drafting techniques such as greedy, local search and scaling as well as methods based on linear programming and are able to apply these to new problems.

Courses

V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment

written examination (approx. 50 to 60 minutes); if announced by the lecturer by four weeks prior to the examination date, the written examination can be replaced by an oral examination of one candidate each or an oral examination in groups (one candidate each: 15 minutes, groups of 2: 20 minutes, groups of 3: 25 minutes) Language of assessment: German, English if agreed upon with the examiner

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2010)
Master's degree (1 major) Mathematics (2012)
Master's degree (1 major) Mathematics (2010)
Master's degree (1 major) Computational Mathematics (2012)
First state examination for the teaching degree Gymnasium Computer Science (2009)