Module Description

Module title
Robotics

Abbreviation
10-I-RO-072-m01

Module Coordinator
holder of the Chair of Computer Science VII

Module offered by
Institute of Computer Science

ECTS
8

Method of grading
numerical grade

Only after succ. compl. of module(s)
--

Duration
1 semester

Module level
graduate

Other prerequisites
--

Contents
History, applications and properties of robots, direct kinematics of manipulators: coordinate systems, rotations, homogenous coordinates, axis coordinates, arm equation. Inverse kinematics: solution properties, end effector configuration, numerical and analytical approaches, examples of different robots for analytical approaches. Workspace analysis and trajectory planning, dynamics of manipulators: Lagrange-Euler model, direct and inverse dynamics. Mobile robots: direct and inverse kinematics, propulsion system, tricycle, Ackermann steering, holonomes and non-holomone restrictions, kinematic classification of mobile robots, posture kinematic model. Movement control and path planning: roadmap methods, cell decomposition methods, potential field methods. Sensors: position sensors, speed sensors, distance sensors.

Intended learning outcomes
The students master the fundamentals of robot manipulators and vehicles and are, in particular, familiar with their kinematics and dynamics as well as the planning of paths and task execution.

Courses
V + Ü (no information on SWS (weekly contact hours) and course language available)

Method of assessment
--

Allocation of places
--

Additional information
--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--

Module appears in
Master’s degree (1 major) Space Science and Technology (2007)
Master’s degree (1 major) Space Science and Technology (2005)
Master’s degree (1 major) Space Science and Technology (2006)