Module title

Machine Learning

Abbreviation

10-HCI-ML-152-m01

Module coordinator

holder of the Chair of Computer Science IX

Module offered by

Institute of Computer Science

ECTS

5

Method of grading

numerical grade

Only after succ. compl. of module(s)

--

Duration

1 semester

Module level

graduate

Other prerequisites

--

Contents

Machine learning is the science of getting computers to act without being explicitly programmed. In the past decade, machine learning has given us practical speech recognition, effective web search, self-driving cars and a vastly improved understanding of the human genome. Machine learning is so pervasive today that you probably use it dozens of times a day without knowing it. It is one of today’s prominent paradigms in HCI applicable in all areas where the understanding of user input of high variability, specifically for natural interactions using, e.g. gesture, speech or eye-gaze, is paramount. Many researchers also think it is the best way to make progress towards human-level AI.

In this course, students will learn about the most effective machine learning techniques, and gain practice implementing them and getting them to work. Students not only learn the theoretical underpinnings of learning, but also gain the practical know-how needed to quickly and powerfully apply these techniques to new problems. Finally, they learn about some of Silicon Valley’s best practices in innovation as it pertains to machine learning and AI.

This course provides a broad introduction to machine learning, data-mining and statistical pattern recognition. Topics include: (i) Supervised learning (parametric/non-parametric algorithms, support vector machines, kernels, neural networks). (ii) Unsupervised learning (clustering, dimensionality reduction, recommender systems, deep learning). (iii) Best practices in machine learning (bias/variance theory; innovation process in machine learning and AI). The course will also draw from numerous case studies and applications, so that you’ll also learn how to apply learning algorithms to building gesture-based and multimodal interfaces, text and speech understanding (web search, anti-spam), smart robots (perception, control), computer vision, medical informatics, audio, database mining and other areas.

Intended learning outcomes

At the end of the course, the students will be able to independently solve machine learning tasks, using assistive technologies such as Octave. In addition, they will be able to derive fundamental principles and to apply these in their own programs. Students will be able to choose the appropriate approaches and tools for the solution of a given machine learning task in various application areas and, in particular, in HCI.

Courses

(type, number of weekly contact hours, language — if other than German)

V (2) + Ü (2)

Module taught in: German and/or English

Method of assessment

(type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

presentation of project results (approx. 30 minutes)

Language of assessment: German and/or English

creditable for bonus

Allocation of places

--

Additional information

--

Referred to in LPO I

(examination regulations for teaching-degree programmes)

--

Module appears in
<table>
<thead>
<tr>
<th>Master's degree (1 major) Human-Computer-Interaction (2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's degree (1 major) Human-Computer-Interaction (2018)</td>
</tr>
</tbody>
</table>