

Module description

Module title					Abbreviation
Computer Vision 1					10-Al=CV1-242-m01
Module coordinator				Module offered by	
holder of the Chair of Computer Science IV				Institute of Computer Science	
ECTS	Method of grading		Only after succ. compl. of module(s)		
5	nume	merical grade			
Duration Module level		Module level	Other prerequisites		
1 semester		graduate			
Contents					

The lecture provides knowledge about current methods and algorithms in the field of computer vision. Important basics as well as the most recent approaches to image representation, image processing and image analysis are taught.

Topics include data representation, image acquisition, restoration and enhancement, features, object modeling, image and video understanding, deep learning and generative methods and applications.

Actual models and methods of machine learning as well as their technical backgrounds are presented and their respective applications in Computer Vision are shown.

Intended learning outcomes

Students have fundamental knowledge of problems and techniques in the field of computer vision and are able to independently identify and apply suitable methods for concrete problems.

- Overview of the most important concepts of image representation, image analysis, machine learning and algorithms from Computer Vision
- Gaining experience through home assignments, practical computer and programming exercises
- Providing a sound solid background knowledge for the advanced Computer Vision 2 course

Courses (type, number of weekly contact hours, language — if other than German)

 $V(2) + \ddot{U}(2)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

Written examination (approx. 60 to 120 minutes)

If announced by the lecturer at the beginning of the course, the written examination may be replaced by an oral examination of one candidate each (approx. 20 minutes) or an oral examination in groups of 2 candidates (approx. 15 minutes per candidate).

Language of assessment: English

Creditable for bonus

Allocation of places

--

Additional information

--

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Artificial Intelligence & Extended Reality (2024)

Master's degree (1 major) Artificial Intelligence (2024)

Module description

Master's degree (1 major) Management (2024) Master's degree (1 major) Information Systems (2024) Master's degree (1 major) Economathematics (2024)

JMU Würzburg • generated 29.03.2024 • Module data record 141842