User Interfaces

<table>
<thead>
<tr>
<th>Module title</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-HCI=BS-141-m01</td>
<td></td>
</tr>
</tbody>
</table>

Module coordinator
holder of the Chair of Computer Science IX

Module offered by
Institute of Computer Science

<table>
<thead>
<tr>
<th>ECTS</th>
<th>Method of grading</th>
<th>Only after succ. compl. of module(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>numerical grade</td>
<td>--</td>
</tr>
</tbody>
</table>

Duration

<table>
<thead>
<tr>
<th>Module level</th>
<th>Other prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>graduate</td>
<td>--</td>
</tr>
</tbody>
</table>

Contents

The multimodal interaction paradigm simultaneously uses various modalities like speech, gesture, touch, or gaze, to communicate with computers and machines. Basically, multimodal interaction includes the analysis as well as the synthesis of multimodal utterances. This course concentrates on the analysis, i.e., the input processing. Input processing has the goal to derive meaning from signal to provide a computerized description and understanding of the input and to execute the desired interaction. In multimodal systems, this process is interleaved between various modalities and multiple interdependencies exist between simultaneous utterances necessary to take into account for a successful machine interpretation.

In this course, students will learn about the necessary steps involved in processing unimodal as well as multimodal input. The course will highlight typical stages in multimodal processing. Using speech processing as a primary example, they learn about:

1. A/D conversion
2. Segmentation
3. Syntactical analysis
4. Semantic analysis
5. Pragmatic analysis
6. Discourse analysis

A specific emphasis will be on stages like morphology and semantic analysis. Typical aspects of multimodal interdependencies, i.e., temporal and semantic interrelations are highlighted and consequences for an algorithmic processing are derived. Prominent multimodal integration (aka multimodal fusion) approaches are described, including transducers, state machines, and unification.

Intended learning outcomes

After the course, the students will be able to build their own multimodal interfaces. They will have a broad understanding of all the necessary steps involved and will know prominent algorithmic solutions for each of them. Students will learn about available tools for recurring tasks and their pros and cons.

Courses

V + Ü + S (no information on SWS (weekly contact hours) and course language available)

Method of assessment

as specified by the lecturer at the beginning of the course a) written examination (approx. 75 minutes) or b) presentation or presentation of project (approx. 20 minutes) with written elaboration or documentation (approx. 10 pages) or c) oral examination (approx. 30 minutes)

Language of assessment: German, English

Allocation of places

--

Additional information

--

Referred to in LPO I
(examination regulations for teaching-degree programmes)

--

Module appears in

Master's degree (1 major) Computer Science (2014)