

Module description

Module title					Abbreviation	
Hyperspectral Remote Sensing					04-GEO-MET6-212-m01	
Module coordinator				Module offered by		
holder of the Professorship of Remote Sensing				Institute of Geography and Geology		
ECTS	Meth	od of grading	Only after succ. co	Only after succ. compl. of module(s)		
5	nume	rical grade				
Duration		Module level	Other prerequisite	Other prerequisites		
1 semester		graduate				
Contents						

Spectroscopy and hyperspectral remote sensing enables to retrieve very detailed spectral information about a certain surface in dense bandwith intervalls. Information on the "spectral fingerprints" of surfaces is then available in a near-continuous manner. This allows for the differentiation of materials, such different geologic surfaces, different urban materials, or plants of different composition and vigor. Especially field- and laboratory spectroscopy has shown many benefits, as measurements can be carried out in a controlled environment, and can be directly visualized and explained. This course provides insights into practical experiments using a field spectrometer, and subsequent data analysis to assess key environmental parameters such as plant health, soil moisture content, and geologic composition.

Intended learning outcomes

The content of this course includes both the theoretical background of field and imaging spectroscopy, as well as practical experiments and subsequent data analysis. It is the aim to gain knowledge and understanding of the following particular topics: the theoretical background of field and imaging spectroscopy, general reflectance and transmittance properties of plant leaves, canopies and soils, the quantification of biophysical and biochemical properties using spectroscopic measurements, feature parametrization and regression analysis, the advantages and challenges of existing and planned hyperspectral spaceborne sensors

Courses (type, number of weekly contact hours, language - if other than German)

 $S(1) + \ddot{U}(1)$

Module taught in: English

Method of assessment (type, scope, language — if other than German, examination offered — if not every semester, information on whether module is creditable for bonus)

- a) presentation (approx. 30 minutes) or
- b) preparing a poster (approx. 10 hours total) or
- c) term paper (approx. 15 pages)

Language of assessment: English or German (assessment will be held in English; in addition, the examiner may, where possible, decide to hold assessment in German)

Assessment offered: Once a year, summer semester

creditable for bonus

Allocation of places

--

Additional information

__

Workload

150 h

Teaching cycle

--

Referred to in LPO I (examination regulations for teaching-degree programmes)

--

Module appears in

Module description

Master's degree (1 major) Applied Earth Observation and Geoanalysis (EAGLE) (2021)

JMU Würzburg • generated 18.04.2025 • Module data record 140028