

Modulbeschreibung

Modulbezeichnung		Kurzbezeichnung
Theoretische Quantenoptik		11-TQO-221-m01
Modulverantwortung	anhietende Finrichtung	

Modulverantwortunganbietende EinrichtungGeschäftsführende Leitung des Instituts für Theoretische
Physik und AstrophysikFakultät für Physik und Astronomie

1 y		
ECTS Bewertungsart		zuvor bestandene Module
numerische Notenvergabe		
dauer	Niveau	weitere Voraussetzungen
ester	weiterführend	
	nume dauer	numerische Notenvergabe dauer Niveau

Inhalte

- 1. Semi-klassische Atom-Feld-Wechselwirkung
- 2. Wechselwirkung von Atomen mit quantisierten Lichtfeldern und das "Dressed-Atom" Modell
- 3. Master-Gleichung und Theorie der offenen Systeme
- 4. Kohärenz-und Interferenzeffekte
- 5. Kohärente Licht-Propagation in resonanten atomaren Medien
- 6. Photonen-Statistik und -Korrelationen
- 7. Quantenoptik der Vielteilchen-Systeme

Qualifikationsziele / Kompetenzen

Die Studierenden machen sich mit der Wechselwirkung von Licht mit Atomen auf der mikroskopischen Ebene vertraut. Sie erlernen den sicheren Umgang mit dem Dichte-Matrix-Formalismus für Quantensysteme und die nötigen mathematischen Konzepte dafür. Ein Schwerpunkt der Vorlesung sind die Quanteneigenschaften des Lichts, Photonenstatistik und Korrelationen, sowie deren experimentelle Signatur. Ein anderer Schwerpunkt bildet die Theorie der offenen Systeme. Die Studierenden lernen die Master-Gleichung mit Lindblad--Superoperatoren kennen. Des Weiteren machen sie sich mit der Modellierung von Kohärenz- und Interferenz-Effekte in der Propagation von Licht durch atomare Medien vertraut. Ein weiteres Ziel ist das Verständnis der kollektiven Effekte in Vielteilchen-Systeme: Superradianz, Subradianz und Energie--Verschiebungen, und deren Anwendungen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 90-120 Min.) oder
- b) mündliche Einzelprüfung (ca. 30 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder
- d) Projektbericht (ca. 8-10 S.) oder
- e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungssprache: Deutsch und/oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

	Platzvergabe
	weitere Angaben
	Arbeitsaufwand
ſ	240 h

Lehrturnus

k. A.

Modulbeschreibung

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Physik (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Physik (2023)

JMU Würzburg • Erzeugungsdatum 18.04.2025 • Moduldatensatz 140637