

Modulbeschreibung

Modulbezeichnung					Kurzbezeichnung
Surface Science					11-SSC-Int-201-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Institu				Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
6	nume	rische Notenvergabe			
Moduldauer		Niveau	weitere Voraussetzungen		
1 Semester		weiterführend			
Inhalte					

Bedeutung von Oberflächen und inneren Grenzflächen, Unterscheidung von Volumenphasen, klassische Beschreibung, Kontinuumsmodelle

Atomare Struktur: Rekonstruktionen und Adsorbate, Oberflächenorientierung und Symmetrien, Mikroskopische Prozesse an Oberflächen,

Thermodynamik von Oberflächen, Adsorption und Desorption, Gleichgewichte, thermodynamische Phasen, experimentelle Charakterisierung,

Elektronische Struktur von Oberflächen, Chemische Bindung, Oberflächenzustände, Spin-Bahn-Kopplung: Rashba-Effekt und Topologische Isolatoren, Magnetismus an Oberflächen

Qualifikationsziele / Kompetenzen

Die Studentinnen und Studenten verfügen über einen Überblick über die vielfältigen Aspekte der Oberflächenphysik und kennen insbesondere die Ursachen und Zusammenhänge der physikalischen Besonderheiten an Oberflächen und Grenzflächen. Zudem kennen die Studentinnen und Studenten die wichtigsten modernen Untersuchungsmethoden und ihre spezifischen Anwendungsmöglichkeiten im Zusammenhang mit der Oberflächenphysik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

a) Klausur (ca. 90-120 Min.) oder b) mündliche Einzelprüfung (ca. 30 Min.) oder c) mündliche Gruppenprüfung (2 TN, je ca. 30 Min.) oder d) Projektbericht (ca. 8-10 S.) oder e) Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden.

Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: im Semester der LV und im Folgesemester

Prüfungssprache: Englisch

Platzvergabe

weitere Angaben

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Physics International (2020)

Modulbeschreibung

Master (1 Hauptfach) Quantum Engineering (2020) Exchange Austauschprogramm Physik (2023) Master (1 Hauptfach) Quantum Engineering (2024) Master (1 Hauptfach) Physics International (2024)

JMU Würzburg • Erzeugungsdatum 29.03.2024 • Moduldatensatz 110429