

Modulbeschreibung

Modulbezeichnung					Kurzbezeichnung
Feldtheorie in der Festkörperphysik					11-FTFK-161-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Instituts für Theoretische Physik und Astrophysik				Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
8	nume	rische Notenvergabe			
Moduldauer		Niveau	weitere Voraussetzungen		
1 Semester		weiterführend			

Inhalte

Das Thema des Kurses wird in der Regel die quantenmechanische Beschreibung von Vielteilchensystemen mit der Methode der Funktionalintegrale sein. Ein möglicher Syllabus ist:

- 1. Zweite Quantisierung und kohärente Zustände
- 2. Der Formalismus der Funktionalintegrale bei endlichen Temperaturen T
- 3. Störungstheorie bei T = o
- 4. Ordnungsparameter und gebrochene Symmetrie
- 5. Greensche Funktionen
- 6. Die Landau-Theorie der Fermi-Flüssigkeiten
- 7. weitere Entwicklungen

Qualifikationsziele / Kompetenzen

Die Studierenden werden die modernen Methoden der Pfad- und Funktionalintegrale auf Quantenvielteilchensysteme anwenden können. Dieser Zugang ergänzt den traditionellen Zugang mit Greenschen Funktionen und Feynman-Diagrammen

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(4) + R(2)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: im Semester der LV und im Folgesemester

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

240 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Modulbeschreibung

Master (1 Hauptfach) Mathematische Physik (2016)

Master (1 Hauptfach) Computational Mathematics (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Computational Mathematics (2019)

Master (1 Hauptfach) Mathematik (2019)

JMU Würzburg • Erzeugungsdatum 29.03.2024 • Moduldatensatz 123904