

Modulbeschreibung

Modulbezeichnung					Kurzbezeichnung
Bildgebende Methoden am Synchrotron					11-BMS-152-m01
Modulverantwortung				anbietende Einrichtung	
Geschäftsführende Leitung des Physikalischen Instituts				Fakultät für Physik und Astronomie	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
6	nume	rische Notenvergabe			
Moduldauer		Niveau	weitere Voraussetzungen		
1 Semester		grundständig	-		
Inhalto					

Inhalte

Periodische und aperiodische Signale. Grundlagen der diskreten und exakten Fourier-Transformation. Grundlagen der digitalen Signal- und Bildverarbeitung. Diskretisierung von Signalen/Abtasttheorem (Shannon). Homogene und lineare Filter, das Faltungsprodukt. Fensterfunktionen und Interpolation von Bildern. Das Parsival-Theorem, Korrelation und energetische Betrachtung. Statistische Signale, Bildrauschen, Momente, stationäre Signale. Tomographie: Hankel- und Radon-Transformation.

Qualifikationsziele / Kompetenzen

Der/Die Studierende ist mit den Grundlagen der digitalen Bild- und Signalverarbeitung vertraut. Er/Sie kennt die Funktionsweisen und Anwendungen verschiedener Bildverarbeitungsmethoden und ist in der Lage, sie in der Praxis anzuwenden.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

V(3) + R(1)

Veranstaltungssprache: Deutsch oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 90-120 Min.) oder mündliche Einzelprüfung (ca. 30 Min.) oder mündliche Gruppenprüfung (2 TN, ca. 30 Min. je TN) oder Projektbericht (ca. 8-10 S.) oder Referat/Vortrag (ca. 30 Min.).

Sofern eine Klausur als Prüfungsform festgelegt wurde, kann diese in eine mündliche Einzel- bzw. Gruppenprüfung geändert werden. Dies ist spätestens vier Wochen vor dem ursprünglich festgesetzten Klausurtermin von der Dozentin bzw. dem Dozenten anzukündigen.

Prüfungsturnus: jährlich, SS

Prüfungssprache: Deutsch und/oder Englisch

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

180 h

Lehrturnus

k. A.

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Bachelor (1 Hauptfach) Physik (2015)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2015)

Master (1 Hauptfach) Funktionswerkstoffe (2016)

Bachelor (1 Hauptfach) Physik (2020)

Bachelor (1 Hauptfach) Nanostrukturtechnik (2020)

Bachelor (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Funktionswerkstoffe (2022)

Modulbeschreibung

Exchange Austauschprogramm Physik (2023)

JMU Würzburg • Erzeugungsdatum 29.03.2024 • Moduldatensatz 122905