

Modulbeschreibung

Modulbezeichnung	Kurzbezeichnung	
Diskrete Mathematik		10-M=VDIM-161-m01
Modulverantwortung	anbietende Einrichtung	

Studiendekan/-in Mathematik			Institut für Mathematik	
ECTS	Bewertungsart zuvor bestandene		zuvor bestandene M	lodule
5	numerische Notenvergabe			
Moduldauer Niveau		weitere Voraussetzungen		
1 Samostar waitarfiihrand		woiterführend		

Inhalte

Weiterführende Methoden und Ergebnisse eines ausgewählten Teilgebiets der Diskreten Mathematik (etwa Kodierungstheorie, Kryptographie, Graphentheorie oder Kombinatorik).

Empfohlene Vorkenntnisse:

Vorausgesetzt werden grundlegende Kenntnisse der Inhalte des Moduls "Einführung in die Diskrete Mathematik".

Qualifikationsziele / Kompetenzen

Der/Die Studierende verfügt über vertiefte Kenntnisse in einem Teilbereich der Diskreten Mathematik.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (ca. 60-90 Min., Regelfall) oder
- b) mündliche Einzelprüfung (ca. 15 Min.) oder
- c) mündliche Gruppenprüfung (2 TN, ca. 10 Min. je TN)

Prüfungssprache: Deutsch oder Englisch

Prüfungsturnus: im Semester der LV und im Folgesemester

bonusfähig

Platzvergabe

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Mathematik (2016)

Master (1 Hauptfach) Physik (2016)

Master (1 Hauptfach) Nanostrukturtechnik (2016)

Master (1 Hauptfach) Wirtschaftsmathematik (2016)

Master (1 Hauptfach) Mathematische Physik (2016)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2016)

Master (1 Hauptfach) Mathematik (2019)

Master (1 Hauptfach) Nanostrukturtechnik (2020)

Modulbeschreibung

Master (1 Hauptfach) Physik (2020)

LA Master Gymnasium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Zusatzstudium MINT-Lehramt PLUS im Elitenetzwerk Bayern (ENB) (2020)

Master (1 Hauptfach) Mathematische Physik (2020)

Master (1 Hauptfach) Quantentechnologie (2021)

Master (1 Hauptfach) Wirtschaftsmathematik (2021)

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Master (1 Hauptfach) Wirtschaftsmathematik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Wirtschaftsmathematik (2024)

JMU Würzburg • Erzeugungsdatum 24.08.2024 • Moduldatensatz 123786