

Modulbeschreibung

Modulbezeichnung					Kurzbezeichnung
Ausgewählte Kapitel der Funktionentheorie					10-M=VAFT-222-m01
Modulverantwortung				anbietende Einrichtung	
Studiendekan/-in Mathematik				Institut für Mathematik	
ECTS	Bewe	rtungsart	zuvor bestandene Module		
5	numerische Notenvergabe				
Moduldauer		Niveau	weitere Voraussetzungen		
1 Semester		weiterführend			
Indiana.					

Inhalte

Weiterführende Methoden und Ergebnisse der komplexen Analysis anhand ausgewählter Themen wie spektrale Funktionentheorie oder Operatortheorie sowie exemplarische Anwendungen hiervon z.B. in der Funktionalanalysis, harmonischen Analysis, Approximationstheorie, der Theorie partieller Differentialgleichungen oder der Mathematischen Physik.

Qualifikationsziele / Kompetenzen

Der/Die Studierende kennt die grundlegenden Begriffe, Methoden und Ergebnisse der höheren Funktionentheorie und besitzt insbesondere eine Vertrautheit mit den Eigenschaften holomorpher Funktionen. Er/Sie kann die erworbenen Fertigkeiten in Zusammenhang setzen mit anderen Zweigen der Mathematik und Anwendungsfächern.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(3) + \ddot{U}(1)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

- a) Klausur (Regelfall) (ca. 60-90 Min.) oder
- b) Mündliche Einzelprüfung (ca. 15 Min.) oder
- c) Mündliche Gruppenprüfung (2 TN, je ca. 10 Min.)

Prüfungsturnus: im Semester der LV und im Folgesemester

Prüfungssprache: Deutsch oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

--

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

__

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Computational Mathematics (2022)

Master (1 Hauptfach) Mathematik (2022)

Master (1 Hauptfach) Mathematische Physik (2022)

Exchange Austauschprogramm Mathematik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)