

Modulbeschreibung

Modulbezeichnung					Kurzbezeichnung
Energieinformatik 1					10-l=El1-232-m01
Modulverantwortung				anbietende Einrichtung	
Inhaber/-in des Lehrstuhls für Informatik III				Institut für Informatik	
ECTS	Bewei	Bewertungsart zuvor b		or bestandene Module	
5	numerische Notenvergabe				
Moduldauer		Niveau	weitere Voraussetzungen		
1 Semester		weiterführend			

Inhalte

Grundlagen zu physikalischen Einheiten; Grundlagen zum Aufbau von Energiesystemen und deren Komponenten; Modellierung von Energiesystemen; Energiemärkte; Komponenten intelligenter Stromnetze und Smart Grids; Demand Side Management und flexible Verbraucher; Virtuelle Kraftwerke; Sektorenkopplung; Aktuelle Forschungsthemen

Qualifikationsziele / Kompetenzen

Die Studierenden verstehen den grundlegenden Aufbau von Energiesystemen und deren Komponenten (Windund PV-Anlagen, Kraftwerke, Stromnetze, Verbraucher, Speichertechnologien und Märkte). Sie können Modellierungs-, Simulations- und Optimierungsmethoden für die Analyse nachhaltiger Energiesysteme einsetzen und sind in der Lage Energiesysteme mit modernen Softwaretools zu modellieren. Zudem können sie Konzepte zu intelligenten Stromnetzen (Smart Grids) sowie zur Integration von erneuerbaren Energien, Energiespeichern, Elektrofahrzeugen, Wärmepumpen und weiteren flexiblen Lasten interpretieren und beurteilen. Sie sind zudem in der Lage Chancen, Risiken und Herausforderungen der Energiewende sowie die Rolle der Informatik in diesem Kontext zu benennen.

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Veranstaltungssprache: Deutsch und/oder Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 TN, je ca. 15 Min.) ersetzt werden.

Prüfungssprache: Deutsch und/oder Englisch

bonusfähig

Platzvergabe

--

weitere Angaben

mögliche Schwerpunkte für den MA 120 Informatik: IN

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Bezug zur LPO I

§ 22 II Nr. 3 b)

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Informatik (2023)

Master (1 Hauptfach) Computational Mathematics (2024)

Master (1 Hauptfach) Mathematik (2024)

Master (1 Hauptfach) Informatik (2025)

Modulbeschreibung

JMU Würzburg • Erzeugungsdatum 18.04.2025 • Moduldatensatz 141354