

Modulbeschreibung

Modul	bezeich	nung			Kurzbezeichnung		
Compu	iter Vis	ion 2			10-Al=CV2-242-m01		
Modul	verantv	vortung		anbietende Einrichtung			
Inhabe	er/-in de	es Lehrstuhls für Informa	atik IV	Institut für Informatik			
ECTS	Bewe	rtungsart	zuvor bestandene Module				
5	nume	rische Notenvergabe					
Moduldauer		Niveau	weitere Voraussetzungen				
1 Semester		weiterführend					
Inhalte	.						

Die Veranstaltung vermittelt Kenntnisse über den aktuellen Stand der Technik auf dem Gebiet des Computer Vision. Es werden die neuesten Fortschritte vermittelt. Diese Themen werden behandelt:

- Überblick über Computer Vision
- Überblick über Deep Learning
- Klassifikation, Detektion, Erkennung
- Bewegung und Tracking
- Geometrie und 2D/3D-Modellierung
- Segmentierung
- Lichtfelder und Neural Radiance Fields
- Generative Methoden und Diffusionsmodelle
- Transformer und Fundamentmodelle
- Effizienz und Erklärbarkeit
- Anwendungen

Moderne Modelle und Methoden sowie ihre technischen Hintergründe werden vorgestellt und ihre jeweiligen Anwendungen in der Computer Vision aufgezeigt.

Qualifikationsziele / Kompetenzen

Die Studierenden haben fortgeschrittene Fachkenntnisse über Probleme und Techniken im Bereich des Computer Vision und sind in der Lage, selbständig geeignete Methoden für konkrete Problemstellungen zu identifizieren und anzuwenden.

- Überblick über die wichtigsten Konzepte und modernsten Modelle und Algorithmen des maschinellen Lernens im Bereich Computer Vision
- Praktische Erfahrung durch Hausübungen sowie Computer- und Programmierübungen

Lehrveranstaltungen (Art, SWS, Sprache sofern nicht Deutsch)

 $V(2) + \ddot{U}(2)$

Veranstaltungssprache: Englisch

Erfolgsüberprüfung (Art, Umfang, Sprache sofern nicht Deutsch / Turnus sofern nicht semesterweise / Bonusfähigkeit sofern möglich)

Klausur (ca. 60-120 Min.)

Klausur kann nach Ankündigung der Dozentin bzw. des Dozenten zu LV-Beginn durch eine mündliche Einzelprüfung (ca. 20 Min.) oder mündliche Gruppenprüfung (2 Teilnehmer, je ca. 15 Min.) ersetzt werden.

Prüfungssprache: Englisch

Bonusfähig

Pl	la	tzv	ve	rg	al	be
			-	. 0	•	

weitere Angaben

Arbeitsaufwand

150 h

Lehrturnus

k. A.

Modulbeschreibung

Bezug zur LPO I

--

Verwendung des Moduls in Studienfächern

Master (1 Hauptfach) Artificial Intelligence & Extended Reality (2024)

Master (1 Hauptfach) Künstliche Intelligenz (2024)

JMU Würzburg • Erzeugungsdatum 29.03.2024 • Moduldatensatz 141843