\( \sum_{i=1}^k h_n(x_i) = 1 \)
Es gilt:
\( \sum_{i=1}^k = \frac{H_1}{n} + \frac{H_2}{n} +...+\frac{H_k}{n} \)
\( = \frac{H_1+H_2+...+H_k}{n} \)
\( = \frac{\sum_{i=1}^k H_i}{n} = \frac{n}{n} = 1 \)
\( \sum_{i=1}^k h_n(x_i) = 1 \)
Es gilt:
\( \sum_{i=1}^k = \frac{H_1}{n} + \frac{H_2}{n} +...+\frac{H_k}{n} \)
\( = \frac{H_1+H_2+...+H_k}{n} \)
\( = \frac{\sum_{i=1}^k H_i}{n} = \frac{n}{n} = 1 \)